Penerapan Algoritma K-Means Clustering Untuk Klasterisasi Penyakit Pasien
Keywords:
Data Mining; K-Means; ClusteringAbstract
Rs. Subulussalam City, is the centre of the regional general hospital of Subulussalam city Aceh which is already known and trusted by the local community. Various types of patient diseases that exist in this public hospital, therefore, the purpose of this study is to cluster patients at Rs. Kota Subulussalam, with the problems that are happening in the hospital, namely data retrieval. Subulussalam City, with the problems that are happening in the hospital, namely searching for patient data and also in predicting the level of the number of patients in the Subulussalam city hospital. So that employees and management at the hospital, have difficulty in classifying patient data. Based on the above problems, a patient clustering system was carried out using the K-Means Algorithm. The clustering process is divided into three categories namely self care, intermediate care and total care.With the clustering of patients can determine the number and type of staff needed and determine the value of productivity so that the number of nurses with patient needs can be balanced. By using the K-Means Clustering algorithm, the author will cluster the patient disease data of the subulussalam city public hospital, with the hope that this algorithm can be a solution to the problem so far, so that it will facilitate the parties involved in the development of the clustering that the author compiled. The final result of the application of the K-Means method is that the residents diagnosed with Lung TB are 4 people, while Tbc is 5 people and Hiv Aids is 6 people.
References
S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,” J. Nas. Komputasi dan Teknol. Inf., vol. 1, no. 2, 2018, doi: 10.32672/jnkti.v1i2.771.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,” J. Media Inform. Budidarma, vol. 4, no. 1, pp. 51–58, 2020.
D. M. Sinaga, A. P. Windarto, D. Hartama, and S. Saifullah, “Pengelompokkan Indeks Harga Konsumen Menurut Kota Dengan Datamining Clustering,” in Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 2019, vol. 2, no. 1.
M. Anjelita, A. P. Windarto, and D. Hartama, “Pemanfaatan Datamining Pada Pengelompokan Provinsi Terhadap Pencemaran Lingkungan Hidup,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 659–666, 2019, doi: 10.30865/komik.v3i1.1675.
. F., F. T. Kesuma, and S. P. Tamba, “Penerapan Data Mining Untuk Menentukan Penjualan Sparepart Toyota Dengan Metode K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 67–72, 2020, doi: 10.34012/jusikom.v2i2.376.
W. Purba, W. Siawin, and . H., “Implementasi Data Mining Untuk Pengelompokkan Dan Prediksi Karyawan Yang Berpotensi Phk Dengan Algoritma K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 85–90, 2019, doi: 10.34012/jusikom.v2i2.429.
“DATA MINING?: PENERAPAN RAPIDMINER DENGAN K-MEANS CLUSTER PADA DAERAH TERJANGKIT DEMAM BERDARAH DENGUE ( DBD ) BERDASARKAN PROVINSI,” vol. 3, no. 2, pp. 173–178, 2018.
G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. Dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019.
D. P. Indini, S. R. Siburian, N. Nurhasanah, and D. P. Utomo, “Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan,” in Prosiding Seminar Nasional Sosial, Humaniora, dan Teknologi, 2022, pp. 325–331.
Y. Syahra, “Penerapan Data Mining Dalam Pengelompokkan Data Nilai Siswa Untuk Penentuan Jurusan Siswa Pada SMA Tamora Menggunakan Algoritma K-Means Clustering,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 17, no. 2, p. 228, 2018, doi: 10.53513/jis.v17i2.70.
G. Gunadi and D. I. Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth )?:,” Telematika, vol. 4, no. 1, pp. 118–132, 2012.
B. D. Mudzakkir, “Pengelompokan Data Penjualan Produk Pada Pt Advanta Seeds Indonesia Menggunakan Metode K-Means,” J. Mhs. Tek. Inform., vol. 2, no. 2, pp. 34–40, 2018.
A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, pp. 25–36, 2021.
S. A. Rahmah, “KLASTERISASI POLA PENJUALAN PESTISIDA MENGGUNAKAN METODE K-MEANS CLUSTERING ( STUDI KASUS DI TOKO JUANDA TANI KECAMATAN HUTABAYU RAJA ),” vol. 1, no. 1, pp. 1–5, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Means Clustering Untuk Klasterisasi Penyakit Pasien
Published
Issue
Section
Copyright (c) 2024 Alpazri Lingga
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).