Integration of LOPCOW and ARAS Methods for Selecting the Best Employees in the Finance Division


Authors

  • Junhai Wang Zhejiang Technical Institute of Economics, Zhejiang, China
  • Setiawansyah Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia

DOI:

https://doi.org/10.64366/dss.v2i3.102

Keywords:

Employee Performance; Multi-Criteria Decision Making (MCDM); LOPCOW Method; ARAS Method; Decision Support System

Abstract

This research is motivated by problems in the performance evaluation process of employees, which often still takes place subjectively and lacks a systematic calculation basis. This can lead to unfair assessments and the potential for incorrect decisions. To address these issues, this study employs a combination of the LOPCOW and ARAS methods as an approach in a multi-criteria decision support system. The combination of the LOPCOW and ARAS methods is necessary because they complement each other in producing a more objective and accurate decision-making process. LOPCOW plays a role in determining the criteria weights objectively based on the logarithmic variation of the data, and ARAS is used to evaluate and rank alternatives based on their proximity to the ideal condition. The LOPCOW method is used to objectively determine the weights of criteria based on relative importance, while the ARAS method is used to calculate the relative utility values of each alternative, thereby producing clear and measurable final rankings. The research results indicate that out of the six employee alternatives evaluated, Employee A2 ranked first with a score of 0.9879, followed by Employee A6 with a score of 0.982. These findings prove that the integration of the LOPCOW and ARAS methods can provide objective, accurate, and transparent results in ranking alternatives. Therefore, this approach can be relied upon as a solution to address issues of subjectivity and improve the quality of decision-making, particularly in a systematic and accountable evaluation of employee performance.

Downloads

Download data is not yet available.

References

A. Karim, S. Esabella, K. Kusmanto, M. Mesran, and U. Hasanah, “Analisa Penerapan Metode Operational Competitiveness Rating Analysis (OCRA) dan Metode Multi Attribute Utility Theory (MAUT) Dalam Pemilihan Calon Karyawan Tetap Menerapkan Pembobotan Rank Order Centroid (ROC),” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 4, p. 1674, Oct. 2021, doi: 10.30865/mib.v5i4.3265.

W. I. Safitri, M. Mesran, and S. Sarwandi, “Penerapan Metode Preference Selection Index (PSI) Dalam Penerimaan Staff IT,” Bull. Informatics Data Sci., vol. 1, no. 1, p. 1, May 2022, doi: 10.61944/bids.v1i1.1.

S. Harjanto, S. Setiyowati, and R. T. Vulandari, “Application of Analytic Hierarchy Process and Weighted Product Methods in Determining the Best Employees,” Indones. J. Appl. Stat., vol. 4, no. 2, p. 103, Nov. 2021, doi: 10.13057/ijas.v4i2.44059.

D. T. Do, “Assessing the Impact of Criterion Weights on the Ranking of the Top Ten Universities in Vietnam,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 4 SE-, pp. 14899–14903, Aug. 2024, doi: 10.48084/etasr.7607.

A. Uluta?, F. Balo, and A. Topal, “Identifying the Most Efficient Natural Fibre for Common Commercial Building Insulation Materials with an Integrated PSI, MEREC, LOPCOW and MCRAT Model,” Polymers (Basel)., vol. 15, no. 6, p. 1500, Mar. 2023, doi: 10.3390/polym15061500.

V. Simic, S. Dabic-Miletic, E. B. Tirkolaee, Ž. Stevi?, A. Ala, and A. Amirteimoori, “Neutrosophic LOPCOW-ARAS model for prioritizing industry 4.0-based material handling technologies in smart and sustainable warehouse management systems,” Appl. Soft Comput., vol. 143, p. 110400, Aug. 2023, doi: 10.1016/j.asoc.2023.110400.

Sri Agustiani Br Siburian, Mohammad Taufan Asri Zaen, Setiawansyah, Dodi Siregar, Erlin Windia Ambarsari, and Yuwan Jumaryadi, “Penerapan Metode Additive Ratio Assement (ARAS) dalam Pemilihan Customer Service Terbaik,” J. Informatics Manag. Inf. Technol., vol. 3, no. 1, pp. 12–17, Jan. 2023, doi: 10.47065/jimat.v3i1.239.

Y. Rong, L. Yu, Y. Liu, V. Simic, and H. Garg, “The FMEA model based on LOPCOW-ARAS methods with interval-valued Fermatean fuzzy information for risk assessment of R&D projects in industrial robot offline programming systems,” Comput. Appl. Math., vol. 43, no. 1, p. 25, 2023, doi: 10.1007/s40314-023-02532-2.

N. Yilmaz, “An Integrated Lopcow-Wisp Model For Analyzing Performance Of Banking Sector In Romania,” Acad. Stud. Soc. Hum. Adm. Sci., p. 161, 2023, doi: 10.57116/aschas.1613012.

S. Boškovi?, L. Švadlenka, M. Dobrodolac, S. Jov?i?, and M. Zanne, “An Extended AROMAN Method for Cargo Bike Delivery Concept Selection,” Decis. Mak. Adv., vol. 1, no. 1, pp. 1–9, Jun. 2023, doi: 10.31181/v120231.

R. Sitinjak and S. Nurlela, “Pemilihan E-Wallet Pada Kerry Parcel Outlet Menggunakan Metode Analytical Hierarchy Process (AHP),” INSANtek, vol. 3, no. 2, pp. 49–54, Nov. 2022, doi: 10.31294/instk.v3i2.1542.

R. M. Sinurat, I. J. T. Tarigan, Riandy Yap, S. N. Nasution, and T. S. Alasi, “Sistem Pendukung Keputusan Pemilihan Karyawan Terbaik Di PT. ABC Menggunakan Metode Analytical Hierarchy Process (AHP),” J. Armada Inform., vol. 8, no. 2 SE-, pp. 1–8, Dec. 2024, doi: 10.36520/jai.v8i2.123.

C. E. Wijaya and A. Farisi, “Penerapan Metode Fuzzy Simple Additive Weighting Pada Sistem Pendukung Keputusan Karyawan Terbaik,” J. Manaj. Teknol. Dan Sist. Inf., vol. 4, no. 1 SE-Articles, Apr. 2024, doi: 10.33998/jms.2024.4.1.1621.

Bella Maitasari and Ahmad Farisi, “Sistem Pendukung Keputusan Pemilihan Karyawan Terbaik Menggunakan Metode Maut ,” SATESI J. Sains Teknol. dan Sist. Inf., vol. 4, no. 1 SE-Articles, pp. 17–23, Apr. 2024, doi: 10.54259/satesi.v4i1.2554.

R. B. Ginting, D. Y. B. Ginting, and D. P. Utomo, “Sistem Pendukung Keputusan Pemilihan Karyawan Terbaik Menggunakan Metode WASPAS,” Bull. Inf. Technol., vol. 5, no. 2 SE-Articles, Jun. 2024, doi: 10.47065/bit.v5i2.1399.

F. Ariany, R. R. Suryono, and S. Setiawansyah, “Decision Support System for Tourist Attraction Recommendations Using Reciprocal Rank and Multi-Objective Optimization on the basis of Ratio Analysis,” Build. Informatics, Technol. Sci., vol. 5, no. 3, pp. 636–648, 2023, doi: 10.47065/bits.v5i3.4663.

Y. Laia, M. Mesran, I. G. I. Sudipa, D. S. Putra, P. Rosyani, and R. Aryanti, “Sistem Pendukung Keputusan Penilaian Kinerja Tenaga Honorer Menerapkan Metode Weighted Product (WP) dan Complex Proportional Assessment (COPRAS) dengan Kombinasi Pembobotan Rank Order Centroid (ROC),” Bull. Informatics Data Sci., vol. 2, no. 1, p. 19, May 2023, doi: 10.61944/bids.v2i1.60.

T. Van Dua, D. Van Duc, N. C. Bao, and D. D. Trung, “Integration of objective weighting methods for criteria and MCDM methods: application in material selection,” EUREKA Phys. Eng., no. 2, pp. 131–148, Mar. 2024, doi: 10.21303/2461-4262.2024.003171.

D. D. Trung, N. T. P. Giang, D. Van Duc, T. Van Dua, and H. X. Thinh, “The Use of SAW, RAM and PIV Decision Methods in Determining the Optimal Choice of Materials for the Manufacture of Screw Gearbox Acceleration Boxes,” Int. J. Mech. Eng. Robot. Res., vol. 13, no. 3, pp. 338–347, 2024, doi: 10.18178/ijmerr.13.3.338-347.

S. Jov?i?, V. Simi?, P. Pr?ša, and M. Dobrodolac, “Picture Fuzzy ARAS Method for Freight Distribution Concept Selection,” Symmetry, vol. 12, no. 7. 2020. doi: 10.3390/sym12071062.

A. Jusufbaši?, “MCDM Methods for Selection of Handling Equipment in Logistics: A Brief Review,” Spectr. Eng. Manag. Sci., vol. 1, no. 1 SE-Articles, pp. 13–24, Aug. 2023, doi: 10.31181/sems1120232j.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Integration of LOPCOW and ARAS Methods for Selecting the Best Employees in the Finance Division

Dimensions Badge

ARTICLE HISTORY

Published: 2025-05-31

Abstract View: 33 times
PDF Download: 6 times

How to Cite

Junhai Wang, & Setiawansyah. (2025). Integration of LOPCOW and ARAS Methods for Selecting the Best Employees in the Finance Division. Journal of Decision Support System Research, 2(3), 125-134. https://doi.org/10.64366/dss.v2i3.102

Issue

Section

Articles