Decision Support System for Determining the Best Coffee Shop Using the Multi Attribute Utility Theory (MAUT) Method with Rank Order Centroid (ROC) Weighting


Authors

  • Risa Ermis Claudia Malau Universitas Budi Darma, Medan,, Indonesia
  • Mesran Sekolah Tinggi Ilmu Manajemen Sukma Medan, Medan, Indonesia

DOI:

https://doi.org/10.64366/dss.v2i2.94

Keywords:

DSS; Coffee Shop; MAUT Method; ROC Method

Abstract

This study discusses the development of a decision support system (DSS) to determine the best coffee shop using the Multi Attribute Utility Theory (MAUT) method and Rank Order Centroid (ROC) weighting. The background of this research is based on the rapid growth of the coffee shop business, which has led to intense competition, requiring business owners to have appropriate strategies and decision-making in choosing a strategic location, adequate facilities, and competitive pricing. The MAUT method is applied because it can accommodate various attributes and criteria that influence decision-making, while ROC is utilized to assign objective weights to each criterion. This study involved five alternative coffee shops, and five evaluation criteria. The results of the calculations show that Coffee Lab achieved the highest final utility value of 0.718, thus being ranked as the best coffee shop, followed by Coffeenatics with 0.395 in second place, Dominico with 0.233 in third place, Kallia with 0.188 in fourth place, and Kopi Tuya with 0.054 in the last position. These findings demonstrate that the application of the MAUT method with ROC weighting can provide objective, systematic, and accurate recommendations in determining the best alternative based on the established criteria. Therefore, this research is expected to serve as a reference for the application of DSS in the coffee shop business sector as well as in other areas that require multi-criteria decision-making.

Downloads

Download data is not yet available.

References

M. N. H. Alvianto dan S. Saifullah, “Sistem Pendukung Keputusan Pemilihan Cafe di Yogyakarta dengan Menggunakan Metode Simple Additive Weighting (SAW),” J. Innov. Inf. Technol. Appl., vol. 2, no. 01, hal. 47–55, 2020, doi: 10.35970/jinita.v2i01.187.

V. Alfheny dan A. Ibrahim, “Implementation of the simple multi-attribute rating technique (SMART) method for support selection of coffee shop business location,” J. Tek. Inform., vol. 3, no. 4, hal. 963–968, 2022, doi: https://doi.org/10.20884/1.jutif.2022.3.4.508.

A. T. Hidayat, N. K. Daulay, dan Mesran, “Penerapan Metode Multi-Objective Optimization on The Basis of Ratio Analysis (MOORA) dalam Pemilihan Wiraniaga Terbaik,” J. Comput. Syst. Informatics, vol. 1, no. 4, hal. 367–372, 2020, [Daring]. Tersedia pada: https://ejurnal.seminar-id.com/index.php/josyc/article/view/444

S. Rahayu dan A. S. Sinaga, “Sistem Pendukung Keputusan Penilaian Kinerja Guru Menggunakan Metode Simple Additive Weighting (SAW),” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 21, no. 1, hal. 16–24, 2022, doi: https://doi.org/10.54082/jiki.28.

R. D. Gunawan, F. Ariany, dan N. Novriyadi, “Implementasi Metode SAW Dalam Sistem Pendukung Keputusan Pemilihan Plano Kertas,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, hal. 29–38, 2023, doi: https://doi.org/10.58602/jaiti.v1i1.23.

R. F. Wahyu, H. Rohayani, V. Y. P. Ardhana, F. Frieyadie, A. Supriyatna, dan D. Desyanti, “Kombinasi Metode Rank Order Centroid (ROC) dan Operational Competitiveness Rating Analysis (OCRA) pada Sistem Pendukung Keputusan Penerimaan Kasir,” Bull. Informatics Data Sci., vol. 2, no. 1, hal. 30, 2023, doi: 10.61944/bids.v2i1.61.

M. A. Abdullah dan R. T. Aldisa, “Implementasi Metode MAUT dalam Sistem Pendukung Keputusan Seleksi Penerimaan Stock Keeper Restoran dengan Pembobotan Rank Order Centroid,” Build. Informatics, Technol. Sci., vol. 4, no. 3, hal. 1422–1430, 2022, doi: 10.47065/bits.v4i3.2656.

A. A. Kusuma, Z. M. Arini, U. Hasanah, dan Mesran, “Analisa Penerapan Metode Multi Attribute Utility Theory (MAUT) dengan Pembobotan Rank Order Centroid (ROC) Dalam Pemilihan Lokasi Strategis Coffeshop Milenial di Era New Normal,” J. Sist. Komput. dan Inform., vol. 3, no. 2, hal. 51–59, 2021, doi: 10.30865/json.v3i2.3575.

M. A. Abdullah dan R. T. Aldisa, “Penerapan Metode MAUT Dalam Rekrutmen Kepala Gudang di Perusahaan Dengan Pembobotan ROC,” KLIK, vol. 4, no. 2, hal. 1073–1079, 2023, doi: 10.30865/klik.v4i2.1323.

M. A. Abdullah dan R. T. Aldisa, “Penerapan Metode MOOSRA Dalam Penentuan Penerimaan Frontliner Menggunakan Pembobotan Metode ROC,” J. Ris. Komputer), vol. 10, no. 1, hal. 330–337, 2023, doi: 10.30865/jurikom.v10i1.5647.

M. R. Ramadhan, M. K. Nizam, dan Mesran, “Penerapan Metode SAW (Simple Additive Weighting) Dalam Pemilihan Siswa-Siswi Berprestasi Pada Sekolah SMK Swasta Mustafa,” TIN Terap. Inform. …, vol. 1, no. 9, hal. 459–471, 2021, [Daring]. Tersedia pada: https://ejurnal.seminar-id.com/index.php/tin/article/view/655

M. L. O. Mardin, A. Fuad, dan H. K. Sirajuddin, “Sistem Pendukung Keputusan Pemilihan Perumahan Dengan Menggunakan Metode Multi Attribute Utility Theory,” J. Ilm. Ilk. - Ilmu Komput. Inform., vol. 4, no. 2, hal. 85–92, 2021, doi: 10.47324/ilkominfo.v4i2.129.

R. N. Sari dan I. Lazuli, “Penerapan Metode Maut Dalam Pemilihan Smartphone Android,” CSRID J., vol. 11, no. 3A, hal. 380–390, 2021.

J. H. Lubis, S. Esabella, Mesran, Desyanti, dan D. M. Simanjuntak, “Penerapan Metode Multi Attribute Utility Theory (MAUT) Dalam Pemilihan Karyawan yang di Non-Aktifkan di Masa Pandemi,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. April, hal. 969–978, 2022, doi: 10.30865/mib.v6i2.3909.

D. Aldo, “Sistem Pendukung Keputusan Penilaian Kinerja Dosen Dengan Menggunakan Metode Multi Attribute Utility Theory ( Maut ),” JURSIMA (Jurnal Sist. Inf. dan Manajemen), vol. 7, no. 2, hal. 76–82, 2019, doi: 10.47024/js.v7i2.180.

P. Purwadi, W. R. Maya, dan A. Calam, “Sistem Pendukung Keputusan Untuk Menentukan Pemasangan Lokasi Strategis Wifi.Id Pada Telkom (Studi Kasus Pada Pemsangan Wifi.Id Di Beberapa Lokasi Medan Menggunakan Metode Oreste,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 19, no. 1, hal. 110, 2020, doi: 10.53513/jis.v19i1.231.

S. F. Pantatu dan I. C. R. Drajana, “Sistem Pendukung Keputusan Penerima Bantuan UMKM Menggunakan Metode MAUT,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 2, hal. 317–325, 2022, doi: 10.32672/jnkti.v5i2.4207.

R. Ramadiani dan A. Rahmah, “Sistem pendukung keputusan pemilihan tenaga kesehatan teladan menggunakan metode Multi-Attribute Utility Theory,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 5, no. 1, hal. 1, 2019, doi: 10.26594/register.v5i1.1273.

A. Perdana dan A. Budiman, “Analysis of Multi-attribute Utility Theory for College Ranking Decision Making,” SinkrOn, vol. 4, no. 2, hal. 19, 2020, doi: 10.33395/sinkron.v4i2.10232.

R. N. Sari dan R. S. Hayati, “Penerapan Metode Multi Attribute Utility Theory (MAUT) Dalam Pemilihan Rumah Kost,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 3, no. 2, hal. 243, 2019, doi: 10.30645/j-sakti.v3i2.144.

H. Sulistiani, Setiawansyah, P. Palupiningsih, F. Hamidy, P. L. Sari, dan Y. Khairunnisa, “Employee Performance Evaluation Using Multi-Attribute Utility Theory (MAUT) with PIPRECIA-S Weighting: A Case Study in Education Institution,” in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), 2023, hal. 369–373. doi: 10.1109/ICIMCIS60089.2023.10349017.

Y. Setiawan dan S. Budilaksono, “Sistem Pendukung Keputusan Pemilihan Mahasiswa Lulusan Terbaik Dengan Menggunakan Metode Multi Attribute Utility Theory (Maut) DiStmik Antar Bangsa,” Ikraith-Informatika, vol. 6, no. 2, hal. 12–20, 2021, doi: 10.37817/ikraith-informatika.v6i2.1566.

H. Haeruddin, R. T. Aldisa, K. Khairunnisa, M. Mesran, dan G. Ginting, “Sistem Pendukung Keputusan Penentuan Pelaku Pariwisata Terbaik dimasa Pandemi Covid-19 Menerapkan Metode OCRA dengan Pembobotan ROC,” J. Media Inform. Budidarma, vol. 6, no. 2, hal. 1056, 2022, doi: 10.30865/mib.v6i2.4000.

D. P. Indini, K. Khairunnisa, N. D. Puspa, T. A. Siregar, dan M. Mesran, “Penerapan Metode OCRA dalam Menentukan Media Pembelajaran Online Terbaik di Masa Pandemi Covid-19 dengan Pembobotan ROC,” J. Sist. Komput. dan Inform., vol. 3, no. 2, hal. 60–66, 2021, doi: 10.30865/json.v3i2.3576.

M. Mesran, T. M. Diansyah, dan F. Fadlina, “Implemententasi Metode Rank Order Cendroid (ROC) dan Operational Competitiveness Rating Analysis (OCRA) dalam Penilaian Kinerja Dosen Komputer Menerapkan (Studi Kasus: STMIK Budi Darma),” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, hal. 822, 2019, doi: 10.30645/senaris.v1i0.89.

F. Mahdi, Faisal, D. P. Indini, dan Mesran, “Penerapan Metode WASPAS dan ROC ( Rank Order Centroid ) dalam Pengangkatan Karyawan Kontrak,” Bull. Comput. Sci. Res., vol. 3, no. 2, hal. 197–202, 2023, doi: 10.47065/bulletincsr.v3i2.232.

R. W. P. Pamungkas dan F. T. Waruwu, “Analisis Sistem Pendukung Keputusan Penentuan Kasi Terbaik Menerapkan Metode OCRA dengan Pembobotan Rank Order Centroid (ROC),” Build. Informatics, Technol. Sci., vol. 3, no. 3, hal. 393–399, 2021, doi: 10.47065/bits.v3i3.1100.

F. Setiawan dan P. S. Ramadhan, “Penerapan Kombinasi Metode MOORA dengan Pembobotan Rank Order Centroid Dalam Penentuan Guru Terbaik,” J. Media Inform. Budidarma, vol. 6, hal. 222–228, 2022, doi: 10.30865/mib.v6i1.3374.

E. W. Ambarsari, H. Rohayani, A. I. A. Lubis, dan R. M. F. Lubis, “Decision Support System for Determining the Best Coffee Shop Applying the OCRA Method using ROC Weighting,” J. Comput. Informatics Res., vol. 3, no. 1, hal. 126–132, 2023, doi: DOI 10.47065/comforch.v3i1.970.

M. A. Abdullah dan R. T. Aldisa, “Penerapan Metode MABAC pada Penentuan Coffee Shop Terbaik,” J. Ris. Komputer), vol. 10, no. 1, hal. 338–347, 2023, doi: 10.30865/jurikom.v10i1.5820.

B. Setiawan, B. Selviana, dan A. S. Y. Irawan, “Mengoptimalkan Fungsi Payment Gateway Midtrans pada Website Coffee Shop Melalui Penggunaan Metode Prototype pada Proses Pengembangan,” JRST (Jurnal Ris. Sains dan Teknol., vol. 7, no. 2, hal. 219–228, 2023, doi: 10.30595/jrst.v7i2.16964.

A. Y. Chandra, D. Kurniawan, dan R. Musa, “Perancangan Chatbot Menggunakan Dialogflow Natural Language Processing (Studi Kasus: Sistem Pemesanan pada Coffee Shop),” J. Media Inform. Budidarma, vol. 4, no. 1, hal. 208, 2020, doi: 10.30865/mib.v4i1.1505.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Decision Support System for Determining the Best Coffee Shop Using the Multi Attribute Utility Theory (MAUT) Method with Rank Order Centroid (ROC) Weighting

Dimensions Badge

ARTICLE HISTORY

Published: 2025-01-31

Abstract View: 13 times
PDF Download: 5 times

How to Cite

Ermis Claudia Malau, R., & Mesran. (2025). Decision Support System for Determining the Best Coffee Shop Using the Multi Attribute Utility Theory (MAUT) Method with Rank Order Centroid (ROC) Weighting. Journal of Decision Support System Research, 2(2), 73-82. https://doi.org/10.64366/dss.v2i2.94