Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang
DOI:
https://doi.org/10.64366/adajisr.v1i1.7Keywords:
Inventory; Goods; Sale; Data Mining; Apriori AlgorithmAbstract
The needs of people in the lower middle and upper middle economic categories. However, small shops often experience problems in managing the inventory of goods or materials needed by customers. This can lead to a lack of goods that customers want, and ultimately disappoint them. Therefore, inventory control is very important in maintaining customer satisfaction and business continuity for small shops. To help overcome this problem, research can be carried out using the Apriori algorithm. This algorithm can help identify the most sold products, so that small shops can organize optimal inventory. In this way, small shops can meet customer needs effectively and efficiently, and avoid stockouts that can disrupt customer satisfaction. In research, several variables are used to collect data, such as transaction date, product name, and number of sales/purchases. This data can then be analyzed using the Apriori algorithm, so that the most sold products can be identified and used as a basis for optimal inventory management.
Downloads
References
F. A. Saputra and A. Iskandar, “Data Mining Penerapan Asosiasi Apriori Dalam Penentuan Pola Penjualan,” J. Comput. Syst. Informatics, vol. 4, no. 4, pp. 778–788, 2023.
M. A. Sundari, R. Pane, and R. Rohani, “Data Mining Clustering Korban Kejahatan Pelecehan Seksual dengan Kekerasan Berdasarkan Provinsi Menggunakan Metode AHC,” Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 364–375, 2023.
R. F. N. Alifah and A. C. Fauzan, “Implementasi Algoritma K-Means Clustering Berbasis Jarak Manhattan untuk Klasterisasi Konsentrasi Bidang Mahasiswa,” Ilk. J. Comput. Sci. Appl. Informatics, vol. 5, no. 1, pp. 31–41, 2023.
R. Perdana and R. Meri, “IMPLEMENTASI DATA MINING PADA PENJUALAN SEPRAI MENGGUNAKAN ALGORITMA APRIORI,” JOISIE (Journal Inf. Syst. Informatics Eng., vol. 7, no. 1, pp. 144–154, 2023.
M. Syahril, K. Erwansyah, and M. Yetri, “Penerapan Data Mining Untuk Menentukan Pola Penjualan Peralatan Sekolah Pada Brand Wigglo Dengan Menggunakan Algoritma Apriori,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 3, no. 1, p. 118, 2020, doi: 10.53513/jsk.v3i1.202.
Y. Andini, J. T. Hardinata, and Y. P. Purba, “Penerapan Data Mining pada Tata Letak Buku Di Perpustakaan Sintong Bingei Pematangsiantar dengan Metode Apriori,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 7, no. 1, pp. 13–18, 2022.
A. N. Rahmi and Y. A. Mikola, “Implementasi Algoritma Apriori Untuk Menentukan Pola Pembelian Pada Customer (Studi Kasus?: Toko Bakoel Sembako),” Inf. Syst. J., vol. 4, no. 1, pp. 14–19, 2021, [Online]. Available: https://jurnal.amikom.ac.id/index.php/infos/article/view/561
A. S. L. T. T. H. Hafizah, “Data Mining Estimasi Biaya Produksi Ikan Kembung Rebus Dengan Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), no. Vol 1, No 6 (2022): EDISI NOVEMBER 2022, pp. 888–897, 2022, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsi/article/view/5732/1938
A. R. Pratama and I. R. Akolo, “Pemetaan Karakteristik Mahasiswa PAI IAIN Sultan Amai Gorontalo Menggunakan K-Means,” Pekerti J. Pendidik. Islam dan Budi Pekerti, vol. 5, no. 1, 2023.
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.
H. Maulidiya and A. Jananto, “Asosiasi Data Mining Menggunakan Algoritma Apriori dan FP-Growth sebagai Dasar Pertimbangan Penentuan Paket Sembako,” Proceeding SENDIU 2020, vol. 6, pp. 36–42, 2020.
A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.
K. Kraugusteeliana, S. Muis, F. Nugroho, A. Karim, and Y. Siagian, “Data Mining Klasifikasi Breast Cancer Menerapkan Algoritma Gradient Boosted Trees,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 2, pp. 881–890, 2023.
L. Karlitasari, I. W. Sriyasa, I. Wahyudi, and H. B. Santosi, “Prediksi Morfologi Jamur Menggunakan Algoritma C5. 0,” J. Teknoinfo, vol. 17, no. 1, pp. 271–278, 2023.
S. Saefudin and S. DN, “Penerapan Data Mining Dengan Metode Algoritma Apriori Untuk Menentukan Pola Pembelian Ikan,” JSiI (Jurnal Sist. Informasi), vol. 6, no. 2, p. 36, 2019, doi: 10.30656/jsii.v6i2.1587.
H. Maulidiya and A. Jananto, “Asosiasi Data Mining Menggunakan Algoritma Apriori Dan Fpgrowth Sebagai Dasar Pertimbangan Penentuan Paket Sembako,” 2020.
N. Barkah, E. Sutinah, and N. Agustina, “Metode Asosiasi Data Mining Untuk Analisa Persediaan Fiber Optik Menggunakan Algoritma Apriori,” J. Kaji. Ilm., vol. 20, no. 3, 2020.
Z. Munawar, Y. Herdiana, and N. I. Putri, “Sistem Rekomendasi Hibrid Menggunakan Algoritma Apriori Mining Asosiasi,” TEMATIK, vol. 8, no. 1, pp. 84–95, 2021.
I. M. D. P. Asana, I. G. I. Sudipa, A. A. T. W. Mayun, N. P. S. Meinarni, and D. V. Waas, “Aplikasi Data Mining Asosiasi Barang Menggunakan Algoritma Apriori-TID,” INFORMAL Informatics J., vol. 7, no. 1, pp. 38–45, 2022.
R. Takdirillah, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan,” Edumatic J. Pendidik. Inform., vol. 4, no. 1, pp. 37–46, 2020, doi: 10.29408/edumatic.v4i1.2081.
Z. Abidin, A. K. Amartya, and A. Nurdin, “PENERAPAN ALGORITMA APRIORI PADA PENJUALAN SUKU CADANG KENDARAAN RODA DUA (Studi Kasus: Toko Prima Motor Sidomulyo),” J. Teknoinfo, vol. 16, no. 2, p. 225, 2022, doi: 10.33365/jti.v16i2.1459.
I. Musdalifah and A. Jananto, “Analisis Perbandingan Algoritma Apriori Dan FP-Growth Dalam Pembentukan Pola Asosiasi Keranjang Belanja Pelanggan,” Progresif J. Ilm. Komput., vol. 18, no. 2, pp. 175–184, 2022.
A. Novianti and E. Elisa, “Penentuan Aturan Asosiasi Pola Pembelian Pada Minimarket Dengan Algoritma Apriori,” Build. Informatics, Technol. Sci., vol. 2, no. 1, pp. 64–70, 2020.
P. H. Simbolon, “Implementasi Data Mining Pada Sistem Persediaan Barang Menggunakan Algoritma Apriori (Studi Kasus: Srikandi Cash Credit Elektronic dan Furniture),” JURIKOM (Jurnal Ris. Komputer), vol. 6, no. 4, pp. 401–406, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2023 Yulia Ananda Br. Sembiring, Emy Alfiani Sembiring

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






