Implementasi Algoritma Homogeneity Untuk Deteksi Tepi Pada Citra Pankromatik


Authors

  • Dedek Kumala Hakim Universitas Budi Darma, Medan, Indonesia

DOI:

https://doi.org/10.64366/adajisr.v2i2.75

Keywords:

Edge Detection; Panchromatic Image; Homogeneity

Abstract

Remote sensing with high-resolution panchromatic imagery plays an important role in spatial analysis such as regional mapping, spatial planning, and disaster mitigation. One important stage in image processing is edge detection, which serves to clarify the boundaries of objects such as buildings, roads, and rivers. Problems that often arise in panchromatic images are noise, contrast differences, and spatial data complexity, which cause traditional edge detection methods to be less than optimal. This study proposes the use of the Homogeneity algorithm as a solution due to its simplicity in gradient calculation. This algorithm works by comparing the intensity value of the central pixel to its eight neighbours in a 3x3 kernel, then selecting the maximum difference to determine the presence of edges. The results of implementation on a 5x5 sample image show that large difference values represent edges, while small values indicate homogeneous areas. Further application on a 500x500 pixel panchromatic image produces clear and contrasting edge visualisation, allowing for better recognition of surface object boundaries. This study proves that the Homogeneity algorithm is capable of extracting image edges quickly and effectively, and can be used as an efficient alternative to complex convolution methods for real-time remote sensing applications.

Downloads

Download data is not yet available.

References

Y.-M. Tan, J.-Z. Huai, dan Z.-S. Tang, “An object-oriented remote sensing image segmentation approach based on edge detection,” Guang pu xue yu Guang pu fen xi= Guang pu, vol. 30, no. 6, hal. 1624–1627, 2010, [Daring]. Tersedia pada: https://europepmc.org/article/med/20707163

X. Shen, Y. Guo, dan J. Cao, “Object-based multiscale segmentation incorporating texture and edge features of high-resolution remote sensing images,” PeerJ. Computer science, vol. 9. College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China., hal. e1290, 2023. doi: https://doi.org/10.7717/peerj-cs.1290.

M. Peng dan S. Li, “Evaluation of edge detection for panchromatic remote sensing image based on ROC curve,” in MIPPR 2007: Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications, 2007, vol. 6790, hal. 619–626. doi: https://doi.org/10.1117/12.750499.

Y. Wang, X. Li, W. Zhang, dan L. Zhang, “Building extraction of urban area from high resolution remotely sensed panchromatic data of urban area,” in Geoinformatics 2008 and Joint Conference on GIS and Built Environment: The Built Environment and Its Dynamics, Nov 2008, vol. 7144, hal. 71441E. doi: 10.1117/12.812745.

L. Xia, X. Zhang, J. Zhang, H. Yang, dan T. Chen, “Building extraction from very-high-resolution remote sensing images using semi-supervised semantic edge detection,” Remote Sens., vol. 13, no. 11, hal. 2187, 2021, doi: https://doi.org/10.3390/rs13112187.

B. Guo, J. Zhang, dan X. Li, “River extraction method of remote sensing image based on edge feature fusion,” IEEE Access, vol. 11, hal. 73340–73351, 2023, doi: 10.1109/ACCESS.2023.3296641.

H. Zhang, K. Zhang, F. Wang, dan W. Qian, “Edge detection algorithm for noisy remote sensing image using directional filter,” in Journal of Physics: Conference Series, 2023, vol. 2478, no. 6, hal. 1–9. doi: 10.1088/1742-6596/2478/6/062018.

D. Prabhakar dan P. K. Garg, “Building Edge Detection from Very High-Resolution Remote Sensing Imagery Using Deep Learning,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 48, hal. 189–196, 2023, doi: https://doi.org/10.5194/isprs-archives-XLVIII-M-3-2023-189-2023.

Y. Liao et al., “A two-stage mutual fusion network for multispectral and panchromatic image classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, hal. 1–18, 2022, doi: 10.1109/TGRS.2022.3222458.

Y. Zhao, C. Xian, G. Wen, P. Huang, dan W. Ren, “Design of distributed event-triggered average tracking algorithms for homogeneous and heterogeneous multiagent systems,” IEEE Trans. Automat. Contr., vol. 67, no. 3, hal. 1269–1284, 2021, doi: 10.1109/TAC.2021.3060714.

M. I. Alhari, H. Nuraliza, dan A. A. N. Fajrillah, “Implementasi Aplikasi Smart City Pada Management Informasi Mitigasi Bencana Kekeringan,” J. Ilm. Teknol. Inf. Asia, vol. 16, no. 1, hal. 9–18, 2022, doi: https://doi.org/10.32815/jitika.v16i1.654.

R. Yan et al., “Label-efficient self-supervised federated learning for tackling data heterogeneity in medical imaging,” IEEE Trans. Med. Imaging, vol. 42, no. 7, hal. 1932–1943, 2023, doi: 10.1109/TMI.2022.3233574.

R. Archana dan P. S. E. Jeevaraj, “Deep learning models for digital image processing: a review,” Artif. Intell. Rev., vol. 57, no. 1, hal. 11, 2024, doi: https://doi.org/10.1007/s10462-023-10631-z.

F. G. Cunha, T. G. Santos, dan J. Xavier, “In situ monitoring of additive manufacturing using digital image correlation: a review,” Materials (Basel)., vol. 14, no. 6, hal. 1–22, 2021, doi: https://doi.org/10.3390/ma14061511.

S. D. Rahmawati dan D. Apriyanti, “Klasifikasi Area Vegetasi dan Non Vegetasi pada Citra Sentinel-2 Menggunakan Metode EVI dengan Google Earth Engine (Studi Kasus: Kabupaten Klaten),” J. Ilm. Geomatika, vol. 3, no. 1, hal. 1–13, 2023, doi: https://doi.org/10.31315/imagi.v3i1.7484.

A. A. G. Ekayana, “Implementasi Dan Analisis Data Logger Sensor Temperature Menggunakan Web Server Berbasis Embedded System,” J. Pendidik. Teknol. dan Kejuru., vol. 17, no. 1, hal. 64–74, 2020, doi: https://doi.org/10.23887/jptk-undiksha.v17i1.22411.

H. Pangaribuan dan S. Sitohang, “Peningkatan Kualitas Deteksi Tepi dengan Metode Segmentasi Citra,” REMIK Ris. dan E-Jurnal Manaj. Inform. Komput., vol. 7, no. 1, hal. 591–601, 2023, doi: 10.33395/remik.v7i1.12050.

P. E. Debevec, C. J. Taylor, dan J. Malik, “Modeling and rendering architecture from photographs: A hybrid geometry-and image-based approach,” in Seminal Graphics Papers: Pushing the Boundaries, Volume 2, 2023, hal. 465–474. doi: https://doi.org/10.1145/3596711.3596761.

H. Rayra, Y. Yassir, dan R. Rachmawati, “Penggunaan Koreksi Gamma Dengan Metode Robert, Prewitt, Dan Sobel Untuk Penyempurnaan Gambar Pada Citra Dalam Air,” J. TEKTRO, vol. 7, no. 1, hal. 65–71, 2023, doi: http://dx.doi.org/10.30811/tektro.v7i1.3863.

M. T. Ramakrishna, V. K. Venkatesan, I. Izonin, M. Havryliuk, dan C. R. Bhat, “Homogeneous adaboost ensemble machine learning algorithms with reduced entropy on balanced data,” Entropy, vol. 25, no. 2, hal. 2–13, 2023, doi: https://doi.org/10.3390/e25020245.

R. Sianturi, “Uji homogenitas sebagai syarat pengujian analisis,” J. Pendidikan, Sains Sos. Dan Agama, vol. 8, no. 1, hal. 386–397, 2022, doi: https://doi.org/10.53565/pssa.v8i1.507.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Algoritma Homogeneity Untuk Deteksi Tepi Pada Citra Pankromatik

Dimensions Badge

ARTICLE HISTORY

Published: 2025-02-28

Abstract View: 61 times
PDF Download: 78 times

How to Cite

Hakim, D. K. (2025). Implementasi Algoritma Homogeneity Untuk Deteksi Tepi Pada Citra Pankromatik. ADA Journal of Information System Research, 2(2), 60-67. https://doi.org/10.64366/adajisr.v2i2.75